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Computational study of a weakly compressible mixing barrier
in low Prandtl number, strongly stratified fluids
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The effects of weak compressibility in the evolution of a fluid governed by the anelastic fluid
equations are explored computationally. The basis for this study is a careful determination of the role
which the anelastic divergence constraint plays in the evolution of a periodic array of interacting
vortices. Our numerical studies address a blocking phenomenon occurring in strongly stratified
flows with small Prandtl numbers. Computationally, we first document this blocking event which
strongly limits vertical mixing. This is achieved using idealized equations of fluid motion which do
not excite a density perturbation and exhibits that the presence of a strong density transition layer,
consistently modeled in the anelastic mass balance, may lead to a dramatic modification of vortex
interactions when compared with the incompressible analog. These modifications are evidenced by
the formation of a weakly compressible mixing barrier. We subsequently isolate this particular
blocking phenomenon as emerging in the limit of small Prandtl number through a sequence of
computational simulations of the complete anelastic fluid equations which retain a density
perturbation. It is shown that a sequential reduction of the Prandtl number yields much weaker
vertical mixing as evidenced by passive tracer statistics. ©2003 American Institute of Physics.
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I. INTRODUCTION

The atmosphere is a compressible fluid admitting stro
vertical density variations over scales on the order of
atmospheric scale height~approximately 8 km in our atmo
sphere!. Necessarily, this strong density variation, given
some mean state,r(z), must be consistently modeled:1 For
quantified accuracy in the simulation of deep atmosphe
one may utilize a generalization of the Boussinesq appr
mation known as the anelastic fluid equations.2–5 These
equations suppress sound waves but retain a nonsolen
mass constraint,“"(r(z)v)50, and thereby offer a compro
mise between the integration of the fully compressible eq
tions ~which require anextremelysmall time step!, and the
incompressible Boussinesq equations~which are invalid over
large vertical scales, and involve the global inversion of
liptic operators to reconstruct the pressure!. There is an ac-
cepted wisdom in the fluid dynamics community that t
primary phenomenological details are captured within
Boussinesq limit of the anelastic equations, and the m
purpose of retaining effects of density variation beyond
standard Boussinesq approximation is purely for obtainin
more quantitatively accurate approximation. In the follo
ing, we will present a model study probing the extent
which phenomenamay be the direct result of a variable de
sity mass balance such as that retained in the anelasti
opposed to Boussinesq approximation.

Certainly, an interesting class of problems which has
received great attention in the literature arises in an atte

a!Present address: Department of Applied Mathematics and Statistics,
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to understand how such a nontrivial anelastic mass const
may lead to modified dynamics and mixing properties re
tive to the analogous incompressible system. Computatio
studies3,6–8 have successfully demonstrated that anelastic
fects are important in obtainingquantitativelycorrect simu-
lations for typical large scale atmospheric density profil
but have not elucidated precisely how variation in the den
profile may alter the predictions.

In the context of scalar mixing, McLaughlin and Fores9

have demonstrated using methods of homogenized avera
that idealized~small scale, weakly compressible! anelastic
flows involving a structured background density field yie
quite different effective mixing properties than their incom
pressible counterpart. Specifically, the presence of a den
transition layer, such as that found in many boundary lay
may lead to anisotropic effective diffusion arising in the for
of local regions of trapped and focused contaminants n
the transition height. Motivated by this work, our purpose
this article is to explore, through a careful computation
study of an idealized set of anelastic fluid equations, n
phenomena associated with structure modeled in the m
state density profile. To make such a determination, we
first idealize to a model which focuses upon dynamic effe
directly attributable to the variable density mass balance

To extract the precise dynamic effects originating fro
the mean state, we present a set of weakly compressible
equations which retain a fixed, variable coefficient, p
scribed mean state density profile, and a consistent, n
trivial mass balance, while neglecting all effects of buo
ancy. We present formal arguments to show that th
idealized equations yield limiting dynamics for strong
stratified situations in which inertial effects dominate effe

ni-
2 © 2003 American Institute of Physics
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of buoyancy. Examples of such scenarios may include
Prandtl number fluids, flow in microgravity, or high Froud
number flow: any driven flow in which the density perturb
tion relaxes immediately to a nontrivial mean state den
field which is maintained by external sourcing. The equ
tions we study model an inertially dominated system in
presence of strongmaintaineddensity variation and conse
quently, our study delineates phenomena associated
gravity waves and buoyancy instability from behavior arisi
through the anelastic mass balance. The system is also i
esting as a variable-coefficient generalization of incompre
ible Navier–Stokes, with physically motivated coefficients

Through computational simulation of these idealiz
equations, we exhibit an intriguingcompressible mixing bar
rier. This is established by a direct comparison between
dynamics of a purely incompressible, constant density fl
flow with that of the anelastic equations for a velocity fie
initialized as a periodic array of vortices. In the absence
strong density transition such as associated with structure
~exponential or linear! mean state profiles, there is little ph
nomenological difference between the vortex dynamics
the anelastic and incompressible models. However, the p
ence of density transition as modeled in the mean state
sity profile is seen to greatly change the dynamic interac
of these vortices as compared with the incompressible
tem, and leads to amixing barrier which effectively sepa-
rates the fluid system into two distinct regimes. This beh
ior is distinguished from the more typical blocking behav
occurring inlow Froude number flow in that gravity plays n
role in the dynamics studied here. To document the valid
of the formal arguments we use to justify the simplifi
model anelastic system, we reintroduce gravity and exp
how the influence of a density perturbation modifies the
namics. To this end, we simulate this complete anelastic
tem for four different Prandtl numbers~Pr510,1,0.1,0.01!
and exhibit how this particular blocking event arises in t
low Prandtl number limit. We remark that this phenomen
is similar in spirit with existing compressible passive sca
studies9,10 designed to assess the role of a structured den
profile in modifying vertical transport; however, the prese
case involves fully nonlinear, dynamic simulations.

II. ANELASTIC EQUATIONS

An important development in the study of atmosphe
fluid flow was the recognition that for deep convection,
fects of fluid compressibility should have some quantitat
affect upon the dynamics; however, sound propagation co
be neglected through the consideration of anelastic, ‘‘sou
proof’’ fluid equations.2,5 There have been numerous stud
proposing differing modeling approaches as to the pre
form of the equations,1,3–6,11,12however the essential distinc
tion from the more familiar Boussinesq equations comm
to all of these studies is the retention of some mean s
variable density profile,r(z), varying in the vertical, and the
associatedconsistentmass balance“"(r(z)u)50. If the
mean state density is taken to be exactly a constant, the e
tions reduce to the standard Boussinesq equations for
mal convection in a thin layer. Of course, the mean st
Downloaded 27 Oct 2003 to 128.114.50.39. Redistribution subject to A
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density in the atmosphere admits strong variation, espec
over large vertical scales, and consequently the Boussin
equations do not offer a valid model to assess atmosph
phenomena. Nonetheless, the methodology employed to
tify these weakly compressible anelastic models is low Ma
number theory, which generally necessitates the consi
ation of a nontrivial fluid divergence constraint.11,13

The mean state profile most typically considered is t
designed to account for the gravitational compression of
ideal gas under its own weight. These profiles are commo
structureless exponentials, or power laws~depending upon
the precise thermodynamic assumptions!, which vary slowly
in the vertical. A scale for these profiles may be defined
the height over which the associated hydrostatic pressure
tribution drops from its surface value by a factor ofe ~typi-
cally around 8 km for the Earth’s atmosphere!.14 However, it
should be observed that these profiles arise in the mos
ementary situations, and do not in any way attempt to
count for the multitudes of other possible forces which m
give rise to vertical atmospheric density variation~such as
mechanisms producing stable boundary layers in the lo
atmosphere, as well as the radiative mechanisms respon
with the change of stability occurring around the trop
pause!.

To begin to assess potential phenomena associated
a structured mean state density profile, we consider the
lowing system of weakly compressible fluid equations go
erning the velocity field,u:

ut1~u"“ !u52
1

r~z!
“P1

m

r~z!
Du1

m1l

r~z!
“~“"u!,

~1!

“"~r~z!u!50. ~2!

Here,u is the fluid velocity vector,m, l denote the respective
first and second coefficients of viscosity, andr(z) denotes
the prescribed, fixed density profile. These equations clea
represent a modified Navier–Stokes system with a prescr
variable coefficient.

A few remarks are in order regarding the model syst
~1! and~2!. First, we do not describe the mechanisms wh
give rise to the fixed density profile, but instead focus up
phenomenological behavior arising from the incorporation
structure into this mean state. Second, we do not at pre
allow for a density perturbation~see the following for direct
comparison to dynamics which do!. Of course, the density
perturbation comprises an essential ingredient for the ev
tion of the atmospheric system; however, our purpose her
to isolate phenomena originating solely through structure
corporated into the mean state density field as oppose
that associated with buoyancy stability and instability. The
equations yield an analogous system to that of the id
incompressible, constant-density, Navier–Stokes equati
only for flow moving in the presence of a prescribed dens
profile. As such, this system may be viewed as governing
transient behavior associated with a stirred, low Prandtl~or
high Froude! number fluid with maintained mean-state, ve
tical density structure~or essentially the same: fluid motio
at low gravity!. This weakly compressible system idealiz
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2874 Phys. Fluids, Vol. 15, No. 10, October 2003 McLaughlin, Zhou, and Forest
fluid motion where the density of fluid parcels is assumed
immediately relax to the prescribed mean state profile.
will in the following below that~1! and ~2! indeed capture
phenomena to be distinguished and attributable to the
lastic mass balance by~a! presenting a formal scale analys
identifying the emergence of this system in the limit of sm
Prandtl number, and~b! documenting that the blocking phe
nomena documented in the following desists for increas
Prandtl number through direct numerical comparison
tween a complete set of anelastic equations involving
evolving density perturbation. Third, we emphasize that
phenomena observed in the simulations presented in the
lowing do not depend strongly upon the precise form of
viscous stress tensor. The numerical method we employ
quires some viscosity to be stable, and as such, we utilize
consistent stress tensor associated with the compressible
in Eqs.~1! and ~2!.

To address phenomena associated with a structured m
density field, we will considerr(z) to be a given function of
altitude that represents various forms of atmospheric stra
cation, the first corresponding to a structureless mean s
the second corresponding to a density transition layer.
consider three cases here.

Case 1:

r~z![constant. ~3!

Case 2:

r21~z!5eaz, ~4!

FIG. 1. The variable density profiles,r(z), for the structureless~4! and
structured~5! simulations.
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with a a constant parameter.
Case 3:

r21~z!511e tanh@d~z2zL/2!#, ~5!

wheree, d, zL are constants,ZL is the width of the channel
e sets the amplitude of the density change across the la
andd sets the layer thickness.

Figure 1 documents two different density profiles f
cases witha50.02 in the exponential case, ande50.1, d54
for the transition layer.

We note that such density transitions are common occ
rences in many atmospheric boundary layers and in th
moclines in lakes and oceans. We view such hyperbolic t
gent density profiles as simplified cartoons representing s
scenarios.

For the computational simulations we adopt chan
flow boundary conditions. That is, we consider tw
dimensional motions vertically limited by two parallel fixe
boundaries separated by the distanceZL ~see Fig. 2!. We
assume no-slip boundary conditions on the vertical chan
walls, and apply periodic boundary conditions in the ho
zontal direction, over a horizontal width,M.

The initial conditions we study are selected to produ
nontrivial vortex dynamics. The velocity field is initialized a
a standard cellular flow~which is an exact solution of the
two-dimensional inviscid, incompressible Euler equation!
plus a shear flow designed to ensure the no-slip condition
the top and bottom walls. We additionally normalize th
initial field by the mean-state density profile to correctly r
spect the nontrivial flow divergence constraint~2!:

u0~x,y!5
cos~2px!sin~2py!

r~z!
,

~6!

v0~x,y!5
sin~2px!@12cos~2py!#

r~z!
.

FIG. 2. A diagram of the flow region.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2875Phys. Fluids, Vol. 15, No. 10, October 2003 Computational study of a mixing barrier
By adjusting the channel width,M, and height,ZL , the scale
of this initial array of vortices will be changed relative to th
box size and to the scale of the background density pro
We further comment that while such no-slip boundary co
ditions may not be common for atmospheric systems~espe-
cially the top no-slip condition!, we utilize these boundary
conditions simply to initiate interesting vortex dynamics. T
bulk of the subsequent evolution which will yield the com
pressible mixing barrier occurs in the interior far from t
walls.

III. NONDIMENSIONAL SCALINGS, AND THE LOW
PRANDTL NUMBER REDUCTION

We will begin by considering the complete anelas
fluid equations, with idealized thermodynamics, and ass
the scales which give rise to the simplified zero gravity eq
tions outlined in Sec. II. We will not pursue the more gene
problem of beginning with the fully compressible Navier
Stokes equation, and the associated low Mach number th
necessary to obtain these starting equations which are a
eralization of the familiar Boussinesq equations; such ca
lations are outlined in the work of Almgren.11 To this end, we
consider the following set of coupled nonlinear partial diffe
ential equations for unknowns, (u,P,r8), the respective fluid
flow vector, pressure, and density perturbation:

]u

]t
1~u"“ !u52

1

r~z!
“P1

m

r~z!
Du2

r8g

r~z!
ẑ, ~7!

“"~r~z!u!50, ~8!

]r8

]t
1~u"“ !r85kDr82

dr~z!

dz
u"ẑ1Qc . ~9!

Here, we have suppressed effects of second viscosity co
cients for brevity in exposition. The full density field i
r(z)1r8, and g denotes the gravitational acceleratio
Lastly, we have placed all effects of condensational hea
into the representative term,Qc . We will not focus upon
important effects of condensational heating and other ph
change phenomena in the present article, but merely inc
this term to document that under a suitable, well-defin
scaling, such effects may be neglected. We note that th
equations are a generalization of the Boussinesq equa
which allow for motion against a fixed, but variable coef
cient background. In some forms of the anelastic equatio
this background is allowed to itself vary dynamically, a
can be made to satisfy reasonable thermodynamic equa
of state.11 This is the most consistent and thermodynamica
reasonable approach to such systems, however, for simp
in the present discussion, we assume that this backgro
density variability is a steady, fixed function of the vertic
coordinate.

There are a variety of different nondimensionalizatio
which may be employed, and we choose one with length
time scales given by the viscosity and gravity. To this e
define length and time scales through

n5
m

r0
, ~10!
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L5S n2

g D 1/3

, ~11!

T5S n

g2D 1/3

, ~12!

V5
L

T
5~gn!1/3. ~13!

Here,r0 is a reference~constant! density, and son denotes
the usual kinematic viscosity of the fluid. Taking the Pran
number to be the ratio of the kinematic viscosity and~ther-
mal! diffusivity, Pr5n/k, the general anelastic equations pr
sented above may be readily nondimensionalized yieldin

r̄~z!5r~Lz!, ~14!

]u

]t
1~u"“ !u52

1

r̄~z!
“P1

1

r̄~z!
Du2

r8

r̄~z!
ẑ, ~15!

“"~ r̄~z!u!50, ~16!

]r8

]t
1~u"“ !r85

1

Pr
Dr82

dr̄~z!

dz
u"ẑ1

1

r0
S n

g2D 1/3

Qc .

~17!

We note that with this nondimensionalization, allowing for
general, variable coefficient background density functi
r̄(z), the usual Rayleigh number is not immediately o
served, as in the familiar case with a linear background d
sity profile.

The idealized, simplified form~1! and~2! of the anelas-
tic equations is now readily obtained in the limit of sma
Prandtl number, provided the condensational heating eff
satisfy

1

r0
S n

g2D 1/3

Qc!1.

Without doubt, in situations such as dry convection this l
inequality may be satisfied, however, for situations involvi
moist convection, the underlying physics must be accoun
for.

In the following sections, we will document a blockin
event originating directly from the anelastic mass balan
and directly captured by the simplified evolution equatio
~1! and ~2!. We accomplish this through a detailed compa
son between~1! and ~2!, the incompressible fluid equation
and the complete anelastic system, through a sequenc
simulations in which the Prandtl number is varied.

IV. THE NUMERICAL SCHEMES

Our simulations utilize a modification of the projectio
method introduced by Chorin.15 We remark that it is conve-
nient to change fluid flow variables to arrive at a modifi
incompressibleflow system which may be readily simulate
utilizing Hodge decomposition.16 To this end, introduce

h5
1

r
, u5hv, ~18!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wherev5(v1 ,v2) t. Then Eqs.~1! and ~2! become

vt1h~z!v"“v1h8~z!S v1v2

v2
2 D

52“P1mD~h~z!v!1~l1m!

3S h8~z!
]v2

]x

h8~z!
]v2

]z
1h9~z!v2

D , ~19!

“"v50. ~20!

Let v5“Ãv be the vorticity. To gain some intuition
about this system, suppose we ignore the viscosity term. T
ing the curl of~19! and with the help of~20!, one finds

]v

]t
1h~v"“ !v5v2~h9v122h8v!. ~21!

In the limiting case of constant background density, this s
tem reduces to the familiar two-dimensional vorticity tran
port equation. However, nonconstant background den
profiles clearly involve a modified vorticity equation. In th
following, we will computationally examine the ensuing di
ferences in evolution.

We use the projection method,15 together with fast Fou-
rier transform ~FFT!, to solve Eqs.~19! and ~20! where
l1m50. The outline of our numerical methods to solve t
weakly compressible equations~19! and ~20! in a semiperi-
odic region is as follows.

~1! Find U* which satisfies

U* 2Un

Dt
52“pn21/22h~z!@~U"“ !U#n

1
m

h~z!

Dh~z!~Un1U* !

2
. ~22!

~2! ProjectU* to obtainUn11:

Un115P~U* !. ~23!

More specifically, solve

Df5DU* , ~24!

and then set

Un115U* 2Gf, ~25!

whereD and G are discrete divergence and gradient ope
tors.

~3! Update the pressure gradient according to

¹pn11/25¹pn21/21
1

Dt
~ I 2P!U* . ~26!

In the spatial direction, a finite difference method is used.
solve the elliptic equation~24! numerically, we use FFT with
the periodic boundary conditions forf in the horizontal di-
rection and the Neumann boundary condition at the walls
the time direction, a predictor-corrector method~Heun’s
method! is employed onU and“p. We note that the con
vergence of this algorithm depends strongly upon the inc
Downloaded 27 Oct 2003 to 128.114.50.39. Redistribution subject to A
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poration of an explicit, nonzero viscosity. We utilize a sma
nonzero viscosity in the simulations described in the follo
ing ~precise values documented in Sec. V!, and emphasize
that the observed behavior is not directly a result of t
viscosity.

To solve the system~7!–~9! numerically, we take advan
tage of~18! and convert the system into the following form

vt1h~z!v"“v1h8~z!Fv1v2

v2
2 G52“P1mD~h~z!v!

2r8gF01G , ~27!

“"v50, ~28!

r t81~hv"“ !r85kDr82hv"“ r̄~z!2r8“"hv, ~29!

where the first two equations are solved in the same fash
by the above-outlined projection method, and the third eq
tion is solved using central difference discretization in spa
dimensions and Heun’s predictor-corrector method for ti
integration.

To gain a statistical view of our numerical simulation
we eject passive tracer particles at a certain time and let
particles move according to the local fluid velocity. Nume
cally, to track the passive tracer particles, first we use in
polation to find the velocity field at the tracer location. Th
we use a predictor-corrector method to integrate the velo
field to find the tracer location at the next time step.

In all computations to following, the grid size is 12
3512. We have refined the mesh size to test the converge
of our numerical results.

V. SIMULATIONS, AND THE COMPRESSIBLE MIXING
BARRIER: ZERO PRANDTL NUMBER EQUATIONS

We document phenomena directly attributable to the
elastic mass constraint, in this section for the zero-grav
anelastic system~1! and~2!, then in Sec. VI for the complete
anelastic system in the limit of small Prandtl number~or
equivalently, large Froude number!.

Specifically, we now explorephenomena associated wit
structure in the mean state density profile. We compare the
evolution of the three systems:case 1: the incompressible
system@Eqs. ~1! and ~2! with constant background density
r(z)51]; then the anelastic system with two different bac
ground density profiles,case 2: a structureless exponentia
~4!, andcase 3: a transition layer~5!. ~Movies of the numeri-
cal simulations are available online!.17

Figures 3–5 consist of columns 1, 2, 3 corresponding
the dynamic evolution of the vorticity field for cases 1, 2,
just discussed: the left column for the incompressible syst
the middle column for an exponential background density~4!
with scale factora50.02, and the right column for a trans
tion layer density profile~5! with parametersd54, e50.1.
See Fig. 1 for the relative comparison of these two den
profiles. Each output time for the three cases is appro
mately the same. In all simulations, the dynamic viscosity
set to 0.001, and the second viscosity is set to 0. We rem
that we explored nonzero second viscosities~for values up to
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. ~Color! Time lapses of vortic-
ity patterns for constant density~col-
umn 1!, exponential density~4! with
a50.02 ~column 2!, and structured
density~5! with d54, e50.1 ~column
3! simulations of the anelastic mode
~1! and ~2!. In each simulation the
Reynolds number is Re51000.
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0.001! and did not observe significant differences in the o
put. Unless otherwise noted, our channel dimensions
ZL55, M51.

We first discuss theincompressible case, column 1. The
initial conditions selected do not represent an exact ste
solution of the inviscid incompressible Euler equations,
rather are designed to produce interesting vortex interacti
The initial vorticity field is comprised of columns of vorti
ces. Each column contains same-signed vortices, with
sign alternating periodically between columns. For the co
putational domain studied in this problem, five vortices a
initialized in each column. Due to no-slip conditions at t
walls @initially satisfied~see Eq.~6!!# through the incorpora-
tion of the additional shear in the initial velocity field!, like-
signed vortices near the wall pair up, and propagate tow
the interior. Viscosity acts to combine these vortex pairs i
essentially single vortices. When these vortex blobs reach
interior, the blob above interacts with the blob below~and
Downloaded 27 Oct 2003 to 128.114.50.39. Redistribution subject to A
-
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t
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the central vortex appears to be absorbed in the proce!,
producing a new, same-signed vortex pair. This vortex p
spins, and exchanges fluid from the lower half of the co
putational domain to the upper~and vice versa!. It is pre-
cisely this fluid exchange and transport process that we
plore in the ensuing anelastic simulations. We furth
document exchange and transport across the vertical dom
through the tracking of passive tracers.

We comment that similar processes occur in each of
columns, and that this flow does not produce dynamic in
action between columns. It is an interesting question of
compressible vortex dynamics to explain the precise det
of this evolution. Of course, linear stability analysis may
performed upon double arrays of point vortices. The ess
tial mechanisms may be roughly ascertained from the co
parative analysis of a single array, one with repeated sa
signed, same-strength vortices, and one with alternat
signed, same-strength vortices. Clearly, these configurat
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. ~Color! Figure 3 continued.
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are unstable, and it is the most unstable perturbations w
suggest the initial behavior. For a same-signed array,
linear analysis suggests that neighboring vortices should
up ~as in the simulation just documented!; see Saffman.18 For
the alternating array, analysis~see the Appendix! and intu-
ition suggests that every other vortex should pair. The line
ized growth rates associated with these next-nearest-neig
pairings for the alternatingly signed array are smaller b
factor of 4 below the nearest-neighbor couplings givi
maximal growth for the same-signed array. A reasona
plausibility argument to explain the vortex dynamics o
served in these simulations is to conjecture that the ‘‘per
bations’’ associated with our simulations are more likely
seed the nearest-neighbor couplings, and hence the ver
as opposed to horizontal, vortex motion observed in
simulation. Of course the calculation in the Appendix i
volves an infinite array, whereas the simulation involves
array of finite length.
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We next discusscolumn 2, the weakly compressible
simulation involving astructureless, exponential density pro
file. First, we observe overall qualitative similarity with th
incompressible simulation, column 1. Same-signed vorti
in the respective upper and lower domains initially pair, a
subsequently merge. The process continues propagatin
the interior, until the upper vortex pair meets the lower for
ing a single large eddy which exchanges fluid from the up
and lower domains. The onedistinguishing featurefrom the
incompressible simulation is thedownward shift in the strati-
fied merger process.

Column 3 documents the weakly compressible simu
tion involving a structured background density transitio
layer. Strong qualitative differences between the previo
two cases are immediately evidenced through the clear
mation of a vortex mixing barrier. The pairing process co
mences at early stages of the simulation. However, by t
t55.1, a strong difference is encountered. As the vorti
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. ~Color! Figure 4 continued.
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begin to enter the region of strong density transition,
subsequent vortex merger which occurs in columns 1 an
ceases. The vortex motion is effectively blocked, and no n
ticeable exchange of vorticity occurs on the time scale
these simulations. On longer time scales, our simulati
document that ultimately the vortices will leak through th
barrier ~see Fig. 9 and the discussion below!. However, this
time scale is difficult to describe thus far in terms of a scal
law.

To demonstrate that this simulation actually presents
effective barrier to mixing, we consider the evolution of pa
sive markers. First, in Fig. 6 we document the velocity fie
arising in Fig. 4 at timet54.1. The upper field correspond
to the purely incompressible simulations, whereas the lo
field is that arising from the anelastic simulation with a bac
ground transition density field. Observe the striking quali
tive difference: in the weakly compressible simulation,
this output time, little fluid flows across the altitude of stro
density transition. To verify that this observation is n
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anomalous in time, we explore tracer trajectories. At timt
52.1, we release 20 000 nonbuoyant, passive particles
formly distributed over region@0.3,0.7#3@2.5,3.5# ~just
above the density transition! into the incompressible flow o
column 1, and the anelastic transition layer flow of column
These particles are tracked, and we construct histogram
vertical particle distribution. Figure 7 presents these his
grams for short time, and longer time. The left column p
sents the vertical particle distributions for the incompressi
simulation, while the right column gives the analogous d
tribution for the anelastic simulation. Observe: at short tim
the distributions are similar, however at longer times,
effect of the anelastic blocking is strongly evidenced throu
the higher probability for finding particles above the dens
transition in the anelastic simulation. Clearly, the effect
strong density variation is producing an effective mixing b
rier to transport in the anelastic simulation.

We lastly document how the sharpness of the transit
layer lengthens the time scale for blocking in anelastic fl
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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flow. Figures 8 and 9 document the evolution for two diffe
ent anelastic simulations for moderate and sharp den
transition layers. The top row corresponds to a moderate d
sity transition layer withd51, e50.1, while the bottom row

FIG. 6. The velocity field depicted in Fig. 3:~a!—top panel: corresponds to
Fig. 3, column 1, whereas~b!—bottom panel—corresponds to Fig. 3, co
umn 3.
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corresponds to a sharper transition~of same overall density
difference! with d58, e50.1. Observe that for times up t
t54, the qualitative vortex dynamics are similar: blocking
prevalent on these time scales. However, at longer tim
~shown in Fig. 9!, vorticity begins to leak through the barrie
for the case involving a moderate transition layer, wher
the barrier continues to block vortex exchange for t
sharper density transition. This suggests a possible time s
for blocking which is dependent upon the sharpness of
density transition layer.

In closing, we further comment that length scale~for
vortices, channel domain! has been studied and does n
greatly alter the above-mentioned results~see website17!.

VI. FINITE PRANDTL NUMBER SIMULATIONS

Here, we present numerical simulations of the equati
in ~14! for a sequence of Prandtl numbers to document t
the blocking event outlined in Sec. V arises in the limit
small Prandtl number, thereby justifying the use of the ze
Prandtl number equations given in~1! and ~2!.

We begin with the behavior for the identical initial con
ditions, and geometries utilized in Sec. V, only we have a
mented that system to include a density perturbation.
utilize in all simulationsg510, n50.001. We begin by ex-
ploring the different behavior which occurs over a range
Prandtl numbers, with Pr510, 1, 0.1, 0.01, using diffusivi-
ties, k50.0001, 0.001, 0.01, 0.1. In Fig. 10, we present
analogous series of vorticity plots at different times as th
presented in Figs. 3–5, only here each column correspo
to a different Prandtl number, with the first column havin
s-
f

t
-

FIG. 7. The statistics of released pa
sive scalar tracers for the simulation o
Figs. 3–5: the left column is the in-
compressible result, while the righ
column is the weakly compressible re
sult for the structured density profile.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. ~Color! A comparison of the
mixing behavior of structured densi
ties ~5! as the transition width~1/d! is
varied: the top simulation hase50.1,
d51; whereas the lower simulation
hase50.1, d58.
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Pr510, the second, Pr51, the third, Pr50.1, and the fourth,
Pr50.01. The trend is clear: while cases display intrigui
vortex interactions, the behavior at small Prandtl numbe
first notably most similar to that documented by the ze
Prandtl number equations displayed in the right column
Figs. 3–5, and second, the cases with smaller Prandtl num
exhibit much stronger blocking behavior than those at hig
Prandtl number.

To further exemplify this trend for stronger blocking
emerge in the limit of small Prandtl number, in Fig. 11 w
present particle statistics identical to those given in Fig
except here, we have four columns, with Prandtl numb
akin to those in Fig. 10. The phenomena are clear as
Prandtl number is decreased: a clear wall to transport
comes apparent in the simulations with the majority of
particles remaining in the upper half of the simulation d
main.
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VII. CONCLUSION AND DISCUSSION

We have presented numerical simulations which do
ment a striking weakly compressible phenomenon:structure
in the steady background density profileduring high Froude
number anelastic fluid flow yields aneffective mixing barrier
which strongly modifies vortex dynamics as compared w
the incompressible or structureless density counterpart
these simulations, blocking is evidenced through parti
studies which exhibit thatthe anelastic fluid system has re
duced mixing as compared with incompressible simulatio.
The time scale for this blocking is seen to grow with t
sharpness of the density transition. We additionally isola
this particular blocking event as emerging in the limit
small Prandtl number through a sequence of computatio
simulations of the complete anelastic system with den
perturbation. As the Prandtl number was reduced, tracer
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. ~Color! Figure 8 continued, again withd51, 8 for the upper, lower simulations, respectively.
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tograms indicate a transport barrier. Consequently, this of
strong support for utilizing the zero-Prandlt number~low
gravity! equations developed here, especially for flows
volving such vortex interactions, for fluids with small Prand
~or equivalently large Froude! number. Therefore, it seem
natural that this blocking mechanism may be relevant to
exchange problem involving a strongly stratified flui
Clearly, many issues need to be explored. The developm
of an anelastic vortex method could offer insight into t
nonlinear mechanisms responsible for this mixing barr
Work in progress has been successful in explaining cer
aspects of this evolution in limiting cases, however, it
necessary to handle a variable coefficient Green’s functio
generalize the vortex method19,20 to arbitrary anelastic flow.

Numerous additional issues demand consideration.
haps most important is a further careful assessment and
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derstanding of the energetic scales associated with con
sation and other phase change phenomena. Certainly,
phenomena are crucial to moist atmospheric convect
nonetheless, the present study does suggest that at lea
dry convection non-Boussinesq effects such as those em
ied within the nontrivial anelastic mass constraint yield
teresting behavior associated with transport and mixing. F
ther, should such non-Boussinesq effects be consiste
developed into closure models for driven turbulence in
presence of strong density transition? Clearly, buoyancy
fects are important in the consideration of such closures,
care should be taken. Typical Richardson dependent clos
often extinguish mixing coefficients for large Richards
number.21,22 While such closures have proven effective
some circumstances, the work of Majda and Shefter
demonstrated situations in which instability persists at a
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. ~Color! Time lapses of vorticity patterns for a sequence of finite Prandtl number simulations: Pr510 ~column 1!; Pr51 ~column 2!; Pr50.1 ~column
3!; Pr50.01 ~column 4!.
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trarily large Richardson number,23 suggesting the need fo
modified closures. Certainly, for strong density transitio
mixing should be carefully assessed as penetrative mo
will experience dramatic increase in potential energy wh
could potentially drive smaller scale mixing upon relaxatio
The studies presented here, while idealized, do suggest
mixing mechanisms may be strongly modified throu
weakly compressible effects, and a complete mathema
theory for small scale stratified mixing may require the co
sideration of such non-Boussinesq effects.
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APPENDIX: STABILITY OF ALTERNATING PERIODIC
ARRAYS

The stability of an infinite row of vortices of equa
strength has been discussed in Lamb24 and Saffman.18 It is
found that the pairing instability is most unstable for an
finite row of vortices of equal strength.

In this appendix we consider an infinite row of vortice
of alternating strength. The equilibrium configuration co
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 11. The statistics of released passive scalar tracers for the simulations of Fig. 10. Viewed from the left to the right, the columns correspondr510,
1, 0.1, 0.01, respectively.
ly
sists of vortices of strength (21)kG at the pointsx5kh, y
50 (k52`,...,21,0,1,...,̀ ).

Now disturb the row

xj5S h j
0 D1eyj , ~A1!

wheree!1, j 52`,...,21,0,1,...,̀ . Then

dxj

dt
5JG(

kÞ j

Gk~xj2xk!

uxj2xku2
, ~A2!

where

Gk5~21!k, J5S 0 21

1 0 D . ~A3!

The linearized equation is

dyj

dt
5

G

h2
H(

kÞ j

~21!k~yj2yk!

~ j 2k!2
, ~A4!

where

H5S 0 21

21 0 D . ~A5!

This stability problem may be analyzed most simp
through Fourier analysis. To this end, let

f~x,t !5(
k

e22p ikxyk~ t !. ~A6!

Note thatf(x,t) is periodic with respect tox with period 1
andyk(t) is given by

yk~ t !5E
0

1

e2p ikxf~x,t !dx. ~A7!

We further introduce

f0~x,t !5(
k

e22p i ~2k!xy2k~ t !, ~A8!
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f1~x,t !5(
k

e22p i ~2k11!xy2k11~ t !. ~A9!

It is clear that

f~x,t !5f0~x,t !1f1~x,t !. ~A10!

It can be shown that

f0~x,t !5
f~x,t !1f~x1 1

2,t !

2
, ~A11!

f1~x,t !5
f~x,t !2f~x1 1

2,t !

2
. ~A12!

It further can be shown that

g~x!5(
lÞ0

~21! l~12e2p i lx !

l 2
~A13!

is the continuous periodic extension ofg(x)522p2x2 on
@21

2,
1
2#. A plot of g(x) is shown in Fig. 12.
Define

FIG. 12. The plot ofg(x).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



id

r-
r

rin
d

ith

a

nd

ec-

ee
. Sci.

h.

nd
rc-

del
ys.

n
’’ At-

to

mo-

the

us

ov-
to

ec-

,

f

ua-

n

2885Phys. Fluids, Vol. 15, No. 10, October 2003 Computational study of a mixing barrier
f35f02f1 . ~A14!

Then it may be established from~A4! that

]f3

]t
5

G

h2
Hf ~x,t !g~x!. ~A15!

Using ~A11! and ~A12!, one has

f35f02f15f~x1 1
2,t !. ~A16!

From ~A15!, one then has

]f~x1 1
2,t !

]t
5

G

h2
g~x!Hf ~x,t !. ~A17!

Since~A17! is true for anyx and recall from~A6! that f (x)
is periodic with period 1, we have

]f~x,t !

]t
5

]f~x11,t !

]t
5

G

h2
gS x1

1

2DHf S x1
1

2
,t D .

~A18!

Hence

]

]t F f~x,t !

fS x1
1

2
,t D G5

G

h2 F 0 gS x1
1

2DH

g~x!H 0
G

3F f~x,t !

fS x1
1

2
,t D G . ~A19!

The positive eigenvalue of the matrix on the right-hand s
is

l15Ag~x!gS x1
1

2D . ~A20!

For convenience, let us restrictx to 2 1
2<x<0. Then

l152p2ux~x1 1
2!u522p2x~x1 1

2!

52p2@2~x1 1
4!

21 1
16# ~A21!

whose maximum value isp2/8, achieved atx52 1
4. So the

maximum growth rate of an infinite row of vortices of alte
nating strength is smaller than that of an infinite row of vo
tices of equal strength by a factor of 4; see Saffman.18

The most unstable mode is easily shown to be a pai
mechanism coupling next nearest neighbors, as oppose
the case of same signed vortices which pairsnearestneigh-
bors.
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